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Traditionally, the dynamic reservoir effects in the dam—reservoir system are approximated
using the added mass approach. The objective of this study is to develop unconditionally stable
solutions for the dam-reservoir interaction problem in the time domain. The dam—reservoir
system can be categorized as a coupled field system, in which two physical systems of fluid and
structure interact only at the two domains interface. Two methods of staggered solution
procedure are proposed for the dam—reservoir interaction. The first method, the staggered
displacement method, is based on the approximation of the displacement from the structure’s
equation of motion. The second method, is based on the approximation of pressure from the
fluid’s equation of motion. Both methods are shown to be unconditionally stable when the two
differential equations of the fluid and structure include damping terms. The staggered pressure
method was modified for use when the equation of motion includes a diagonal mass matrix.
Two different configurations of concrete gravity dams are used to investigate the accuracy and
stability of the staggered displacement and the modified staggered pressure methods. The
proposed staggered methods were found to be quite accurate when compared with the existing
finite element solution. ( 1998 Academic Press
1. INTRODUCTION

WHEN SUBJECTED TO EARTHQUAKE GROUND MOTION, the analysis of the dam—reservoir
interaction effects is a complex problem. Traditionally, the linear dynamic response of the
dam is obtained in the frequency domain. Another approach to determine the linear and
nonlinear response of the dam—reservoir system is to approximate the reservoir effects by
a number of masses that are added to the dam equation. This is known as the added mass
approach. There is evidence that the added mass approximation may not be suitable for
problems such as those involving the analysis of cracking in the dam structure (Ghaemian
& Ghobarah 1998). The time domain solution of the dam—reservoir interaction problem is
of current interest. Such solution is needed for application in fracture mechanics analysis of
dams subjected to earthquake ground motion.

The dam—reservoir system can be categorized as a coupled field system in which two
physical domains of fluid and structure interact only at their interface. In such a problem,
the presence of interaction implies that the time response of both subsystems must be
evaluated simultaneously (Felippa & Park 1980). Different approaches to the solution of the
coupled field problem exist. Field elimination, simultaneous solution and partitioned
solution are the three classes of solutions for the coupled field system. The advantages and
disadvantages of each method were addressed by Felippa and Park (1980). The field
elimination approach is not feasible in the case of nonlinear problems. The reduced system
of equations has high-order derivatives which cause some difficulties in applying the initial
conditions. The simultaneous solution is time-consuming and involves many operations,
0889—9746/98/070933#16 $30.00 ( 1998 Academic Press
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especially when a large number of elements is used. This method contains matrices with
a large bandwidth and consequently requires a large amount of memory, especially for the
cases when the existing matrices are not symmetric. The main disadvantage of the first two
classes of solution arises from the difficulties encountered in using available software, while
the partitioned solution has the capability of using existing software for each subsystem.
The staggered solution is a partitioned solution procedure that can be organized in terms of
sequential execution of a single-field analyser.

Most of the physical systems are made of subsystems which interact with each other.
These physical systems which are referred to as coupled systems, have been investigated by
several researchers. Methods of solution vary, depending on the governing differential
equations of the subystems, and may lead to different degrees of accuracy and stability of
the solution (Park 1980; Park & Felippa 1980). Coupled problems and their numerical
solutions were addressed by Felippa & Park (1980), Park & Felippa (1980, 1984), Zien-
kiewicz & Taylor (1989), Zienkiewicz (1984), and Zienkiewicz & Chan (1989). Zienkiewicz
& Chan (1989) proposed an unconditionally stable method for staggered solution of
soil-pore fluid interaction problem. Huang (1995) proposed two unconditionally stable
methods for the analysis of soil—pore fluid problem. The methods were named pressure
correction method and displacement correction method. Zienkiewicz & Chan (1989) pre-
sented an unconditionally stable method for staggered solution procedure for the
fluid—structure interaction problem. Their method was proved to be unconditionally stable
when no damping term was included in the equations of the fluid and the structure.
However, when the damping term is included in the equation of the subsystems, the
proposed method may not be unconditionally stable. The problem of solution instability
when the damping term is included in the differential equation, was recognized by Wood
(1990). Most of the staggered solution applications in the field of fluid-structure interaction
were conducted using a method which is not unconditionally stable (Zienkiewicz & Newton
1969; Paul et al. 1981).

In this study, two methods of staggered solution procedure are applied to the dam-
reservoir interaction problem. Both methods are shown to be unconditionally stable when
the two differential equations of the fluid and structure include damping terms. The
accuracy of the solution using both of the proposed methods, is investigated. Two different
configurations of concrete gravity dams are analysed to illustrate the applicability of the
proposed procedure and to compare the solution with available finite element solutions
using the added mass approximation for the fluid—structure interaction.

2. THE COUPLED DAM-RESERVOIR PROBLEM

The dam—reservoir interaction is a classic coupled problem, which contains two differential
equations of the second order. The equations of the dam structure and the reservoir can be
written in the following form:

[M]Mº$ N#[C]MºQ N#[K]MºN"M f
1
N![M]Mº$

g
N#[Q]MPN

"MF
1
N#[Q]MPN, (1)

[G]MP$ N#[C@]MPQ N#[K@]MPN"MFN!o[Q]T (Mº$ N#Mº$
g
N)

"MF
2
N!o[Q]TMº$ N, (2)

where [M], [C] and [K] are the mass, damping and stiffness matrices of the structure and
[G], [C@] and [K@] are matrices representing the mass, damping and stiffness of the
reservoir, respectively. A detailed definition of the [G], [C@] and [K@] matrices and vector
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MFN, is presented in the following sections. [Q] is the coupling matrix; M f
1
N is the vector of

body force and hydrostatic force; and MPN and MºN are the vectors of hydrodynamic
pressures and displacements. Mº®

'
N is the ground acceleration and o is the density of the

fluid. The over-dot represents the time derivative.

3. FINITE ELEMENT MODELLING OF THE RESERVOIR

The hydrodynamic pressure distribution in the reservoir is governed by the pressure wave
equation. Assuming that water is linearly compressible and neglecting its viscosity, the
small-amplitude irrotational motion of water is governed by the two-dimensional wave
equation

+2P(x, y, t)"
1

»2
P$ (x, y, t), (3)

where P(x, y, t) is the hydrodynamic pressure in excess of hydrostatic pressure, » is the
velocity of pressure wave in water, and x and y are the coordinate axes.

The hydrodynamic pressure in the impounded water, governed by equation (3), is due to
the horizontal and the vertical accelerations of the upstream face of the dam, the reservoir
bottom as well as the far end of the reservoir in the case of finite reservoir length. The
motion of these boundaries is related to the hydrodynamic pressure by the boundary
conditions.

For earthquake excitation, the condition at the boundaries of the dam—reservoir, reser-
voir—foundation and the reservoir-far-end are governed by

LP(x, y, t)

Ln
"!oa

n
(x, y, t), (4)

where a
n
(x, y, t) is the component of acceleration on the boundary along the direction of the

inward normal, n. No wave absorption is considered at the boundaries of the reservoir.
For most concrete gravity dams, Eatok Taylor (1981) has shown that free-surface waves

are negligible. On this basis, the boundary condition at the free surface is

P(x, h, t)"0, (5)

where h is the height of the reservoir.
Using finite element discretization of the fluid domain and the discretized formulation of

equation (3), the wave equation can be written in the following matrix form:

[G]MP$ N#[H]MPN"MFN, (6)

where G
ij
" &G%

ij
, H

ij
"&H%

ij
and F

i
"&f %

i
.

The coefficients G%
ij
, H%

ij
and F%

i
for an individual element are determined using the

following expressions:

G%
ij
"

1

»2P
A%

N
i
N

j
dA, (7)

H%
ij
"P

A%
A
LN

i
Lx

LN
j

Lx
#

LN
i

Ly

LN
j

Ly BdA, (8)

F%
i
"P

s%

N
i

LP

Ln
ds, (9)



936 M. GHAEMIAN AND A. GHOBARAH
where N
i
and N

j
are the element shape functions, A

%
is the element area and, s

%
is the

prescribed length along the boundary of the elements. In the above formulation, matrices
[H] and [G] are constant during the analysis, while the force vector MFN and the pressure
vector MPN and its derivatives are the variable quantities in equation (6).

4. TRUNCATED BOUNDARY AT THE FAR END OF THE RESERVOIR

In order to determine the hydrodynamic pressure on the dam due to horizontal ground
motion under the assumption of infinite reservoir, the reservoir must be truncated at
a reasonable distance. Sommerfeld boundary condition is a commonly used approach
which is based on the assumption that at a far distance from the dam face, the outgoing
wave can be considered as a plane wave. Hanna & Humar (1982), Humar & Roufaiel (1983)
and Sharan (1986, 1987) used a radiation condition which models the loss of the outgoing
wave over a wide range of excitation frequencies. In the present analysis, the Sharan (1986)
radiation boundary condition was used. This condition is a suitable one for the time-
domain analysis. Other transmitting boundary conditions (Yang et al. 1993) are more
accurate than Sharan’s; however, the simplicity of the selected boundary condition is
a major advantage.

The Sharan boundary condition at the far-end truncated boundary can be written as:

LP

Ln
"!

n
2h

P!

1

»

PQ . (10)

Implementation of the truncated boundary condition in the finite element model, can be
done by separating the force vector MFN in equation (6) into two components:

MFN"MFF
1
N#MFF

2
N, (11)

where MFF
1
N is the component of the force due to acceleration at the boundaries of the

dam—reservoir and reservoir—foundation while MFF
2
N is due to truncation at the far

boundary.

MFF
2
N"!

n
2h

[D]MPN!
1

»

[D]MPQ N, (12)

where D
ij
"&D%

ij
, and D%

ij
is defined as

D%
ij
"P

l%T

N
i
N

j
dl

T
. (13)

In equation (13), l%
T

is the side of the element on the truncated boundary. Substituting
equations (11) and (12) into equation (6) results in

[G]MP$ N#
1

»

[D]MPQ N#A[H]#
n
2h

[D]BMPN"MFF
1
N. (14)

The physical meaning of the boundary condition given by equation (10) is illustrated by
examining equation (14). Truncation of the boundary is equivalent to adding dampers and
springs to absorb the outgoing waves.
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Putting equation (14) in the format of equation (2), leads to

[C@]"
1

»

[D], [K@]"[H]#
n
2h

[D], MF
2
N!o[Q]TMº$ N"MFF

1
N. (15)

5. TIME-STEPPING SCHEME OF THE COUPLED EQUATIONS

A direct integration scheme is used to find the displacement and hydrodynamic pressure at
the end of the time increment i#1, given the displacement and hydrodynamic pressure at
time i. The Newmark-b method is used for discretization of both equations (impli-
cit—implicit method). In this method MºQ N

i`1
, MºN

i`1
, MPQ N

i`1
and MPN

i`1
can be written as

follows:

MºQ N
i`1

"MºQ Np
i`1

#c*tMº$ N
i`1

, MºQ Np
i`1

"MºQ N
i
#(1!c)*tMº$ N

i
; (16)

MºN
i`1

"MºNp
i`1

#b*t2Mº$ N
i`1

, MºNp
i`1

"MºN
i
#*tMºQ N

i
#(0)5!b)*t2Mº$ N

i
; (17)

MPQ N
i`1

"MPQ Np
i`1

#c*tMP$ N
i`1

, MPQ Np
i`1

"MPQ N
i
#(1!c)*tMP$ N

i
; (18)

MPN
i`1

"MPNp
i`1

#b*t2MP$ N
i`1

, MPNp
i`1

"MPN
i
#*tMPQ N

i
#(0)5!b)*t2MP$ N

i
; (19)

where c and b are the integration parameters.
The governing field equations at time i#1 can be written as follows:

[M]Mº$ N
i`1

#[C]MºQ N
i`1

#[K]MºN
i`1

"MF
1
N
i`1

#[Q]MPN
i`1

, (20)

[G]MP$ N
i`1

#[C@]MPQ N
i`1

#[K@]MPN
i`1

"MF
2
N
i`1

!o[Q]TMº$ N
i`1

. (21)

The coupled field equations (20) and (21) can be solved using the staggered solution
scheme. The procedure can be started by guessing MPN

i`1
in equation (20) to solve for

MºN
i`1

and its derivatives. Then, equation (21) can be solved to find MPN
i`1

. This method
cannot guarantee the unconditional stability of the solution. Similarly, guessing Mº® N

i`1
at

first to calculate MPN
i`1

from equation (21), and then calculating MºN
i`1

from equation (20)
cannot provide an unconditionally stable procedure.

In the following section, two methods of staggered solution are proposed and are shown
to be unconditionally stable.

6. STAGGERED DISPLACEMENT METHOD

In this method, equation (20) can be approximated as follows:

[M]Mº$ N*
i`1

"MF
1
N
i`1

#[Q]MPNp
i`1

![C]MºQ Np
i`1

![K]MºNp
i`1

. (22)

Introducing equations (16), (17) and (19) into equation (20) and substituting into equation
(22), the following equation is obtained:

[M]Mº$ N
i`1

"[M]Mº$ N*
i`1

#b*t2[Q]MP$ N
i`1

!c*t[C]Mº$ N
i`1

!b*t2[K]Mº$ N
i`1

. (23)

The lumped mass assumption will result in a diagonal mass matrix. However, in general,
the off-diagonal terms of the matrices [C] and [K] are not zero. In the seismic analysis of
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a typical concrete gravity dam, the parameters b and c are taken as 0)25 and 0)5,
respectively, and the time step *t is normally taken less than 0)02 s. The numerical value of
each of the two terms b*t2[K] and c*t[C] are much smaller than [M]. By neglecting these
two terms, equation (23) is approximated as

[M]Mº$ N
i`1

"[M]Mº$ N*
i`1

#b*t2[Q]MP$ N
i`1

. (24)

Substituting equation (24) into equation (21), yields

([G]#ob*t2[Q]T[M]~1[Q])MP$ N
i`1

#[C@]MPQ N
i`1

#[K@]MPN
i`1

"MF
2
N
i`1

!o[Q]TMº$ N*
i`1

.

(25)

In equation (25), the right-hand-side terms are known; thus, MPN
i`1

can be obtained. In
order to correct the approximation made in equation (24), MPN

i`1
can be substituted in

equation (20) to calculate MºN
i`1

and its derivatives.
Therefore, the procedure of the staggered displacement method can be summarized by

the following steps: (i) solving equation (22) to calculate Mº® N*
i`1

; (ii) substituting Mº® N*
i`1

into
equation (25) to calculate MPN

i`1
; (iii) substituting MPN

i`1
into equation (20) to calculate

MºN
i`1

and its derivatives.

7. STABILITY OF THE STAGGERED DISPLACEMENT METHOD

In an unconditionally stable solution method, an instability can be attributed to an actual
instability of the structure. While in a conditionally stable method, the instability may be
due to either numerical or structural instability. To show that the described method of
staggered displacement is unconditionally stable, consider a modally decomposed system
with scalar values. In such a system, the displacement and the pressure must not grow. Thus
for Dk D(1, we have

MºN
i`1

"kMºN
i
, MºQ N

i`1
"kMºQ N

i
, Mº$ N

i`1
"kMº$ N

i
; (26)

MPN
i`1

"kMPN
i
, MPQ N

i`1
"kMPQ N

i
, MP$ N

i`1
"kMP$ N

i
. (27)

Using the transformation k"(1#s)/(1!s), the condition for stability requires that the
real part of s be negative, Re(s)40, and that the Routh—Hurwitz criterion (Wood 1990;
Zienkiewicz and Taylor 1989) apply. For b"0)25 and c"0)5, equations (16)—(19) become

Mº$ N
i`1

"

4s2

*t2
MºN

i`1
, MºQ N

i`1
"

2s

*t
MºN

i`1
;

MºQ Np
i`1

"

2s!s2

*t
MºN

i`1
, MºNp

i`1
"(1!s2)MºN

i`1
; (28)

MP$ N
i`1

"

4s2

*t2
MPN

i`1
, MPQ N

i`1
"

2s

*t
MPN

i`1
;

MPQ Np
i`1

"

2s!s2

*t
MPN

i`1
, MPNp

i`1
"(1!s2)MPN

i`1
. (29)
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Rewriting equation (20) without the force terms, gives

[M]Mº$ N
i`1

#[C]MºQ N
i`1

#[K]MºN
i`1

![Q]MPN
i`1

"0. (30)

Combining equations (23) and (25) and substituting them into equation (21) without the
force term, gives

[G]MP$ N
i`1

#[C@]MPQ N
i`1

#[K@]MPN
i`1

#o[Q]T[M]~1 ([M]#c*t[C]#b*t2[K])Mº$ N
i`1

"0. (31)

The modally decomposed system is represented by a single-degree-of-freedom equation.
The single-degree-of-freedom equivalent of equations (30) and (31) will be obtained by
substituting the mass, damping and stiffness values m, c and k, instead of [M], [C] and [K]
in equation (30), and g, c@ and k@ instead of [G], [C@] and [K@] in equation (31). The coupling
matrix [Q] would be represented by scalar quantity q. The characteristic equation of the
coupled field is obtained by substituting equations (28) and (29) into equations (30) and (31)
as follows:

K
m

4s2

*t2
#c

2s

*t
#k !q

oq

m Am#

*t

2
c#

*t2

4
kB

4s2

*t2
g

4s2

*t2
#c@

2s

*t
#k@K"0, (32)

or

a
0
s4#a

1
s3#a

2
s2#a

3
s#a

4
"0, (33)

where

a
0
"

16mg

*t4
, a

1
"

8mc@
*t3

#

8gc

*t3
,

a
2
"

4mk@
*t2

#

4cc@
*t2

#

4gk

*t2
#

4oq2

*t2
#

2oq2c

m*t
#

oq2k

m
,

a
3
"

2c@k
*t

#

2ck@
*t

, a
4
"kk@. (34)

The Routh—Hurwitz conditions for stability are

a
0
'0, a

1
, a

2
, a

3
, a

4
50, K

a
1

a
3

a
0

a
2
K'0, K

a
1

a
3

0

a
0

a
2

a
4

0 a
1

a
3
K'0. (35)

For the structural system of dam and reservoir, m, c, k, g, c@ and k@ are positive quantities.
Therefore, a

0
, a

1
, a

2
, a

3
and a

4
are always positive. The values of the two determinants in

equation (35) are given as:

a
1
a
2
!a

3
a
0
"

32

*t5
m2c@k@#

32

*t5
mc@2c#

32o
*t5

mc@q2#
16o
*t4

c@q2c

#

8o
*t3

c@q2k#
32

*t5
gc2c@#

32

*t5
g2ck

#

32o
*t5

gcq2#
16o
*t4

gc2q2#
8o
*t3

gcq2k, (36)
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a
1
a
2
a
3
!a2

1
a
4
!a2

3
a
0
"

64

*t6
(mk@Jcc@!gkJcc@)2#

64

*t6
mc@3ck#

64

*t6
mc@2c2k@

#

64o
*t6

mc@2q2k#
64o
*t6

mc@q2ck@#
32o
*t5

c@2q2ck

#

32o
*t5

c@q2c2k@#
16o
*t4

c@2q2k2#
16o
*t4

c@q2kck@

#

64

*t6
gc2c@2k#

64

*t6
gc3c@k@#

64o
*t6

gcq2c@k

#

64o
*t6

gc2q2k@#
32o
*t5

gc2q2c@k#
32o
*t5

gc3q2k@

#

16o
*t4

gcq2k2c@#
16o
*t4

gc2q2kk@. (37)

All the terms in equations (36) and (37) are positive. Recalling the condition of stability
(35), then the method of staggered displacement is unconditionally stable.

8. STAGGERED PRESSURE METHOD

In this method, the vector MP$ N*
i`1

is defined using equations (18), (19) and (21) as

[G]MP$ N*
i`1

"MF
2
N
i`1

![C@]MPQ Np
i`1

![K@]MPNp
i`1

. (38)

Substituting equation (38) into equation (21), leads to

[G]MP$ N
i`1

"[G]MP$ N*
i`1

!o[Q]TMº$ N
i`1

!c*t[C@]MP$ N
i`1

!b*t2[K@]MP$ N
i`1

, (39)

or

([G]#b*t2[K@]#c*t[C@]) MP$ N
i`1

"[G]MP$ N*
i`1

!o[Q]TMº$ N
i`1

. (40)

Substituting equation (40) into equation (20) with [J]"[G]#b*t2[K@]#c*t[C@], gives

([M]#ob*t2[Q][J]~1[Q]T)Mº$ N
i`1

#[C]MºQ N
i`1

#[K]MºN
i`1

"MF
1
N
i`1

#[Q]MPNp
i`1

#b*t2[J]~1[G]MP$ N*
i`1

). (41)

Using equation (41), the variable Mº$ N
i`1

can be calculated. Substituting Mº® N
i`1

into
equation (20) gives MPN

i`1
and its derivatives.

Therefore, the procedure of staggered pressure method can be summarized by the
following steps: (i) solving equation (38) to calculate MP$ N*

i`1
; (ii) substituting MP$ N*

i`1
into

equation (41) to calculate Mº$ N
i`1

; (iii) substituting Mº$ N
i`1

into equation (40) to calculate
MPN

i`1
and its derivatives.

9. STABILITY OF THE STAGGERED PRESSURE METHOD

For a stability check, a similar procedure as that used in the displacement method can be
applied. Rewriting equations (20) and (21) without the force terms, yields

[M]Mº$ N
i`1

#[C]MºQ N
i`1

#[K]MºN
i`1

![Q]MPN
i`1

"0, (42)

[G]MP$ N
i`1

#[C@]MPQ N
i`1

#[K@]MP$ N
i`1

#o[Q]TMº$ N
i`1

"0. (43)
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The characteristic equation of the coupled field for a modally decomposed system with
scalar values, can be obtained by substituting equations (28) and (29) into equations (42) and
(43):

K
m

4s2

*t2
#c

2s

*t
#k !q

oq
4s2

*t2
g

4s2

*t2
#c@

2s

*t
#k@ K"0, (44)

or

a
0
s4#a

1
s3#a

2
s2#a

3
s#a

4
"0, (45)

where

a
0
"

16mg

*t4
, a

1
"

8mc@
*t3

#

8gc

*t3
,

a
2
"

4mk@
*t2

#

4cc@
*t2

#

4gk

*t2
#

4oq2

*t2
, (46)

a
3
"

2c@k
*t

#

2ck@
*t

, a
4
"kk@.

The coefficients of the polynomial are all positive. The determinants in the
Routh—Hurwitz conditions, equations (35), give

a
1
a
2
!a

3
a
0
"

32

*t5
m2c@k@#

32

*t5
mc@2c#

32o
*t5

mc@q2#
32

*t5
gc2c@#

32

*t5
g2ck#

32o
*t5

gcq2, (47)

a
1
a
2
a
3
!a2

1
a
4
!a2

3
a
0
"

64

*t6
(mk@Jcc@!gkJcc@)2#

64

*t6
mc@3ck#

64

*t6
mc@2c2k@

#

64o
*t6

mc@2q2k#
64o
*t6

mc@q2ck@#
64

*t6
gc3c@k@#

64

*t6
gc2c@2k#

64o
*t6

gc2q2k@#
64o
*t6

gcq2c@k. (48)

These terms are all positive. Therefore, given the stability conditions (35), the method of
staggered pressure is unconditionally stable.

10. MODIFIED STAGGERED PRESSURE METHOD

Most of the available nonlinear solutions assume a diagonal mass matrix for the purpose of
analysis. The staggered displacement method is the most suitable coupled field problem
solution procedure for the case of nonlinear analysis. In the case of the staggered pressure
method, some difficulties may arise due to the added mass terms in equation (41) which
change the mass matrix from a diagonal to a full matrix. For this reason, a modification to
the staggered pressure method is proposed to make it applicable to nonlinear analysis.

The staggered pressure method is modified by rewriting equation (41) in the following
approximate form:

[M]Mº$ N
i`1

#[C]MºQ N
i`1

#[K]MºN
i`1

"MF
1
N
i`1

#[Q](MPNp
i`1

#b*t2[J]~1([G]MP$ N*
i`1

!o[Q]TMº$ N
i
)). (49)
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Therefore, the procedure of the modified staggered pressure method can be summarized
by the following steps: (i) solving equation (38) to calculate MP$ N*

i`1
; (ii) substituting MP$ N*

i`1
into equation (49) to calculate Mº® N

i`1
; (iii) substituting Mº® N

i`1
into equation (40) to

calculate MPN
i`1

and its derivatives.
The modified staggered pressure method does not guarantee unconditional stability of

the solution.

11. ACCURACY OF THE SOLUTION SCHEME

The accuracy of the staggered solution scheme can be improved by increasing the number of
iterations and/or by decreasing the time step. Increasing the number of iterations of the
staggering scheme is a time-consuming process. The accuracy of the proposed methods is
based on the selection of the appropriate time step. In all of the following analyses, no
iterations have been made for the purpose of improving accuracy. The staggered displace-
ment method and the modified staggered pressure method are compared with the finite
element solution of example problems for the purpose of evaluating the accuracy of the
analysis.

12. NUMERICAL RESULTS

Two cases of concrete gravity dams with different reservoir levels were analysed to
demonstrate the applicability and accuracy of the proposed methods. The modulus of
elasticity, unit weight and Poisson’s ratio of concrete were taken as 3430 MPa, 2400 kg/m3

and 0)2, respectively. The selected dam—reservoir systems for the two cases of numerical
examples are shown in Figures 1 and 2. In the first example, a full reservoir is considered
and the structure has a fundamental frequency of 6)837 rad/s. The second example has
Figure 1. Finite element model of the dam—reservoir system in example 1.



Figure 2. Finite element model of the dam—reservoir system in example 2.

Figure 3. First 10 s of the horizontal component of the 18 May 1940 Imperial Valley earthquake, El Centro record.
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a typical configuration of a concrete gravity dam of fundamental frequency of 7)57 rad/s
with a partially filled reservoir.

Figure 3 shows 10 s of the horizontal S00E component of the 18 May 1940 Imperial
Valley earthquake, El Centro site record, which is selected for the purpose of dynamic
analysis. The ground motion has a peak acceleration of 0)348g. The values of the integration
parameters in the Newmark-b method were taken as b"0)25 and c"0)5. The velocity of
pressure waves in water was taken as 1438.66 m/s.

In the absence of reliable actual measurements of dam crest displacement to a known
ground motion or experimental data, the staggered solution is compared with the
well-established frequency domain analysis. Results of the analysis using the staggered
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displacement and modified pressure methods are compared with the dynamic analysis using
EAGD-84 (Fenves & Chopra 1984) program which assumes infinite reservoir length. In the
finite element formulation of the reservoir, the Sharan boundary condition (Sharan 1986),
which truncates the reservoir, was applied at a distance from the dam equal to 10 times the
dam height.

The EAGD-84 is a computer code in the frequency domain for the linear analysis of the
dam—reservoir interaction which gives the steady state response of the system. The results
presented using the staggered methods are obtained from the time-domain analysis, which
include the steady-state and transient responses of the system. In the case of a typical
concrete gravity dam, the transient response is negligible. Four-node isoparametric ele-
ments were used to represent the finite elements of the structure and the fluid domains.
Stiffness proportional damping (Rayleigh damping) is used. The modified staggered pres-
sure method is used instead of the staggered pressure method, and the results are compared
with those obtained using the staggered displacement analysis procedure.
Figure 4. Dam crest displacement versus time.



Figure 5. Hydrodynamic pressure time history near the bottom of the dam.
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Figure 4 shows the results of the analysis for the dam crest displacement of the two dam
examples. For a time step dt"0)001 s, excellent agreement is found between the response
obtained from the two proposed methods and the EAGD-84 solution.

The hydrodynamic pressure time histories on the upstream face near the bottom of the
dams in the two examples are shown in Figure 5. Results of the staggered displacement
method and the modified staggered pressure method coincide.

Figures 6 and 7 show the results of the analysis obtained using different time steps. The
figures show that the staggered displacement method is accurate even for the large time step
of dt"0)02 s. In the case of the modified staggered pressure method using time step smaller
than 0)004 s, good results are obtained. Using time steps larger than 0)004 s in the modified
pressure method leads to numerical instability of the solution.

The fundamental periods of the dams in the examples 1 and 2 are 0)92 and 0)83 s,
respectively. Normalizing the time step to the fundamental structural period will result in
a ratio of the same order of magnitude as the time step itself. The time step used in the
analysis is small in comparison with the fundamental period of the structure. However, in
the analysis of concrete dams, at least the first three modes of vibration may contribute
significantly to the response.



Figure 6. Accuracy of the proposed method with different time steps in example 1.
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13. CONCLUSIONS

Two methods of staggered solution procedure for the dam—reservoir coupled system are
introduced. The staggered displacement method is based on the approximation of the
displacement in the equation of motion of the structure. The staggered pressure method is
based on the approximation of the pressure in the fluid equation of motion. Both methods
are proved to be unconditionally stable when the two differential equations of the fluid and
structure include damping terms. The displacement and modified staggered pressure
methods are suitable for nonlinear analysis. Two cases of concrete gravity dams are
analysed to investigate the accuracy and stability of the staggered displacement method.
The method is found to be accurate when compared with the frequency-domain finite
element solution. No instability is observed in the analysis in the case of the displacement
method. However, in the case of the modified staggered pressure method, numerical
instability is observed for large time steps. It is concluded that the displacement method
gives stable solution with accurate results even for a large time step. The solution procedure
is found to be less time-consuming than the frequency-domain solution. The modified
staggered pressure method is applicable in problems which are modelled by full mass
matrices.



Figure 7. Accuracy of the proposed method with different time steps in example 2.
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